The fear of periodic polymer surfaces to water

Patricia Martínez García

SOFTMATPOL group Collaboration with IQFR

Hydrophobic and hydrophilic materials

https://www.co-nantec.com/post/recubrimiento-hidrof%C3%B3bico-y-sus-usos

<u>Wenzel</u>

(homogeneous surfaces)

 $r = rac{real \ surface}{projected \ area}$

 $\cos \theta_{Eq} = r \cos \theta_i$

https://ddd.uab.cat/pub/trerecpro/2013/hdl_2072_234675/PFC _AgustinFernandezCanete.pdf

https://nanoslic.com/nanoslic-hydrophobic-coating/angle2/

Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective (springer.com)

> <u>Cassie</u> (heterogeneous surfaces)

Cassie-Baxter equation:

 $\cos\theta_c = \gamma_1\cos\theta_1 + \gamma_2\cos\theta_2$

MOTIVATION

http://chemizest.blogspot.com/2016/12/lotus-effect.html

https://nanoslic.com/nanoslic-hydrophobic-coating/angle2/

https://id1.toaksgogreen.org/janine-benyus-biomimicry-is-innovationinspired-by-nature-3797

https://ddd.uab.cat/pub/trerecpro/2013/hdl_2072_234675/PFC_AgustinFernandezCanete.pdf

Laser-Induced Periodic Surface Structures (LIPSS)

Interference mechanism between the incident and scattered beams.

Laser characteristics:

Laser LOTIS

Fourth harmonic wavelenght: 266 nm Pulse duration: 8 ns Frequency: 10 Hz Iris + diverging lens

Laser Interference Lithography (LIL)

Interference mechanism between the laser beams.

Laser characteristics: Laser Quantel Brilliant B

20.0 nm

Fourth harmonic wavelenght: 266nm Pulse duration: 4 ns Frequency: 10 Hz 1 pulse

Laser Ablation

Removing macroscopic amounts of material by laser pulse.

Nanomaterials | Free Full-Text | Advances in Laser Ablation Synthesized Silicon-Based Nanomaterials for the Prevention of Bacterial Infection | HTML (mdpi.com)

Ablated samples (532 nm)

1 single shot

3 single shots

Laser characteristics:

Laser Quantel Brilliant B Fundamental hatmonic wavelenght: 1064 nm Second harmonic wavelenght: 532 nm Fourth harmonic wavelenght: 266nm Pulse duration: 4 ns Frequency: 10 Hz

3D Printer

LulzBot Mini 2 3D Printer

https://shop.lulzbot.com/lulzbot-miniv2-0-boxed-for-retail-na-kt-pr0047na

<u>Laser</u>

Polymers

Free-standing films

KAPTON properties:

- Mechanical and thermal resistance.
- Effective insulator.
- Resistance to radiation and chemicals.

PEEK properties:

- Thermoplastic.
- Mechanical, thermal and chemical resistance.

PET properties:

• Mechanical, thermal and chemical resistance.

PCL properties:

- Low viscosity and easy processing.
- Miscible.
- It melts easily and is non-toxic.

<u>3F-BIF properties:</u>

• Contact angle greater than 90°.

PCL

<u>3DP</u>

PET

Material	Glass transition temperature (Tg)	Melting point
KAPTON	360°C - 410°C	-
3F-BIF	330°C	-
PEEK	145°C	340°C
PET	73°C - 80°C	265°C
PCL	-60°C	60°C

KAPTON

PEEK

3F-BIF

LIPSS Results

Non-irradiated samples

Contact angle

Laser Ablation Results at 266 nm

Laser Ablation Results at 532 nm

Non-irradiated sample

Laser Ablation Results at 1064 nm

Non-irradiated sample

Contact angles in water at 266 nm

Contact angles in water at 532 nm

Contact angles in water at 1064 nm

Graph of contact angle with time for different wavelengths

ds 3D Printing Results PCL Replicas

Contact angle

Conclusions

- After the formation of LIPSS on the selected polymers the surfaces remained hydrophilic.
- The contact angle after LIPSS formation in KAPTON increased.
- Laser ablation at different wavelengths allowed to obtain hydrophobic surfaces on KAPTON, probably influenced by the chemical changes that the surface undergoes.
- An increase in the contact angle of the ablated polymer was observed with time in the samples that were hydrophobic.
- Obtaining replicas by means of a 3D printer seems to be an optimal method to obtain hydrophobic surfaces on materials that do not absorb at the wavelength of lasers.

Questions

